INDICE:

CAPITULO 1. CULTIVO DE PECES MARINOS 4

1. DESAAFOLLO LAGVARO CONCEPTO DE IARVA Y ALEVIN 4
2 CULTVO LARYARK. 5
2.1. Tanques 0
2.2. Factores Fisicos 6
2.2.1. Iemperalura 6
2.2.2. 山⿲7
2.2.3. 5dinidod 7
2.2.4. pH 7
2.2.5. Fiesión lotal de gasas 7
2.3. Calidad del agua. Renovaciones 7
2.4. Iniciación del cultivo larvario 8
2.5. Alimentación 8
2.6. Crecimiento y supervivencia θ
2.7. Tareas diarias an el cultivo larvario 9
2. DESTEIE 9
3.1. Tanques 9
3.2. Factores fisicos 9
3.3. Calidad del agua. Renovaciones 11
3.4. Iniciación del destete 11
3.5. Alimentación 11
3.6. Crecimiento y supervivencia 11
3.7. Tareas diarias en el destete 12
3. MALFORMACIONIS Y PROELEMAS PATOLOCKOOS 12
4. CRTEROOS SANITARIOS. 12
5. TRANSPORTE DE LARVAS Y AIEVNES 13
CAPITULO 2. CULTIVO DE RODABALLO 15
6. DESARRCULO LARVARO 15
7. CUTIVO IARVAJO 15
2.1. Tanques y densidad 15
2.2. Factores fisico-quimicos. Renovaciones 16
2.3. Alimentación 16
2.4. Crecimiento y supervivencia 17
8. DESTETE 17
3.1. Tanques y densidad 17
3.2. Factores fisico-quimicos. Renovaciones 17
3.3. Alimentación 18
3.4. Crecimiento y supervivencia 18
9. MAFORMACIONES Y PRCBIENAS PATOLOGKOS 18
10. CUITIVO EXTINSIMO Y SEMEXTENSNO 18
CAPITULO 3. CULTIVO DE DORADA 21
11. DESAERROLO LAEVAROC 21
12. CLITIVO LARVARIO 21
2.1. Tanques y densidad 21
2.2. Factores fisico-quimicos. Renovaciones 2)
2.3. Alimentación 22
2.4. Crecimiento y supervivencia 22
3 DESTEIE 23
3.1. Tanques y densidad 23
3.2. Factores fisico-quimicos. Renovaciones 23
3.3. Allimentación 23
3.4. Crecimiento y supervivencia 24
A. MAIFORNMCIONES Y PROBLEMAS PATOIOGCOS 24
4.1. Lordosis y escoliosis 24
4.2. Ausencia de vepiga natatoria 24
4.3. Infecciones bacterianas 25
CAPITULO 4. CULTIVO DE LUBINA 27
13. DESARMCIIO LAEVARO 26
14. CUITIVO LARVARIO 26
2.1. Alimentación 26
15. DESTETE 77
A. MAIFORMACO ONES Y PROGIEMAS PATOLOCHCOS 27
CAPITULO 5. CULTIVO DE LENGUADO $2 B$
16. DESARROLIO LARVABIO 20
17. CUITVO LaRvapio 29
18. DESIETE 30
TERMINOS DEL TEXTO RECOGIDOS EN EL GLOSARIO 32

- Culivo de Peces Marinos

Contenido

1. Desarrollo larvario. Concepto de larva y alevin

2. Cultivo larvario

2.1. Tanques
22. Factores fisicos
2.2.1. Temperatura
2.2.2 Luz
22.3. Salinidad
2.2.4. pH
22.5. Presion total de gases
2.3. Calldad de agua. Renovaciones
2.4. Iricleción del culfivo larvario
2.5. Almentación
2.5. Creciniento y supervivencie
2.7. Tareas dianas en el cultivo larvario

3. Destete

3.1. Tanques
3.2. Factores físices
3.3. Calidad de agua. Renovacianes
3.4. Iriciación del destete
3.5. Alimentación
3.6. Creciniento y suporvivencia
3.7. Tareas diarias en el dastete

4. Malformaciones y problemas patológicos
 5. Criterios sanitarios
 6. Transporte de larvas y alevines

DESARROLLO LARVARIO. CONCEPTO DE LARVA Y ALEVIN

En general, los peces marinos presentan un desarrollo embrionario muy breve. En las especies que se tratarin en este texto (dorada, lubina, rodaballo y lenguado) este desarrollo es de unos pocos dias de temperatura normal de incubación. Asi, la LARVA recien eclosionada es bastante primitiva y no se parece al aduito. El tubo digestivo estád sin formar, tiene cerradas todavia la boca y el ano, y se alimenta de sus reservas vitelinas. Presenta una pigmentación muy escasa o ausente y son cicgos o su agudeza visual es minima. Tienen muy poca actividad, flotando en muchos casos en la superficic vueltos hacia arriba.

La larva va transformándose progresivamente:

- Desarrolla sus distintos aparatos
- Abre la boca y el ano
- Empieza a alimentarse del medio
- Forma las aletas pectorales
- Se muestra más activa
- Abundoma poco a poco la superficie del tanque

Extos cambios se producen en los primeros dias de vida, en la denominada FASE VITELINA, que termina con la completa reabsorción del vitelo y la gota de grasa (entre los dias 5 y 12 de vida, seguin las especies).

La larva sigue creciendo y comienza a experimentar una serie de cambios hasta tomar la apariencia de un adulto. Estos cambios se conocen con el nombre de metamorfosis, y al término de la misma ya no se habla de larvas, sino de alevines o juveniles. La metamorfosis se completa entre los dias 20 y 70 de vida, seguin la especie y la temperatura del agua. El cultivo larvario incluye toda esta fase de desarrollo, comenzando con la larva recién eclosionada y terminando al finalizar la metamorforis,

Larva de 2-3 dias de edad alimentándose de sus reservas vitelinas.

FASE DE DESARROLLO DEL PEZ	FASE DE CULTIVO
Desarrollo embrionario (huevos)	Incubación
Desarrollo larvario (larvas)	Cultivo larvario
Metamorfosis	Destete
Alevinaje (alevines)	Preengorde

Las larvas de peces marinos no son capaces de alimentarse de materia inerte. Su atención se centra en presas móviles, y su capacidad digestiva ex bastante limitada. Debido a esto, su alimentación consiste en presas vivas (zooplancton), siendo las más utilizadas el rotifero y la Artemia.

Entre el cultivo larvario y la siguiente fase de cultivo, el "precngorde" (cultivo de los alevines), existe una fase intermedia denominada "destete", que es el paso de la alimentación en base a presas vivas y la alimentación a base de presas inertes.

El comienzo del destete depende de la especie concreta y del método de trabajo elegido en el criadero. Normalmente, el destete comienza durante la metamorfosis, aunque a veces, sobre todo en el lenguado, se retarda hasta que finaliza la misma. El destete no es en sí una fase de la vida del pez. (como ocurre con la fase larvaria o con la fase de alevinaje), y sucle iniciarse durante el cultivo larvario, realizándose ambos en la misma instalación. No obstante, en este texto se distinguirí entre ambos, ya que generalmente requieren tratamientos diversos.

2 cULTIVO LARVARIO

Ya hemos citado que el cultivo larvario comprende desde la incubación y eclosión de los huevos hasta el preengorde, si bien a los efectos de este tema, limitaremos el enunciado hasta el destete, considerando este último una nueva fase del cultivo de los peces marinos.

Existen tres modalidades de cultivo larvario:

A) Cultivo intensivo, que se realiza en tanques no muy grandes, con un control exhaustivo de los parametros de cultivo y a densidades muy elevadas. Su principal característica es que la alimentación es anladida constantemente al medio por el piscicultor.
B) Cultivo extensivo. Se realiza en tanques o estanques mayores, siendo la densidad mucho menos que en el intensivg. Se caracteriza porque no se le aporta alimentación al medio, nutriéndose las larvas de las presas que existen de forma natural en ©l.
C) Cultive semiextensivo. Es un intermedio entre los dos anteriores. En él se puede aumentar la densidad que presenta el cultivo extensivo añadiéndole a las larvas alimentación natural recolectada del mar.

El cultivo más extendido en las larvas de peces marinos es el cultivo intensivo, ya que al trabajar con densidades mucho mayores, se puede obtener un mayor rendimiento de la instalación. Esto no tiene por qué corresponderse con una mayor supervivencia, ya que por ejemplo en el caso del rodaballo, países como Noruega y Dinamarca utilizan las otrus técnicas de cultivo con muy buenos resultados. La disponibilidad de espacio y la abundancia de zoxplancton en el medio, tienen mucho que ver con la elección de la técrica.

Larva de 6 dias, próxima a terminar la fase vitelina, presentando la boca abierta y el vitelo reabsorbido. Jodavin puede observarse la goto de gasa.

Tanque de cultivo larvario. A. Nivel de aguc. B. Filko.

En España, el cultivo larvario de las especies marinas se realiza intensivamente. Por esto, será a éste tipo de cultivo al que se referiri este texto.

2.1. TANQUES

Los tanques de cultivo larvario son normalmente de fibra de vidrio o poliester, circulares y con el fondo cónico o redondeado, y su volumen oscila emre I y $20 \mathrm{~m}^{3}$ seguin las especies. Están provistos de dos salidas: una salida central situada en el fondo del tanque. y otra salida situada en la parte superior de la pared.

Normalmente, la salida del fondo actủa como desaguie. Por ella se extrsen las larvas muertas y la suciedad que se acumula en el fondo. La salida de la parte superior de la pared actúa como rebosadero, sirviendo para mantener el nivel de agua en el tanque. Para que por este rebosadero no se escapen las larvas y el alimento, se le acopla un filtro. Este filtro es una especie de tambor con una malla muy tupida, de tal modo que permite la salida de agua y retiene en el interior del tanque las larvas y el alimento vivo.

En algunos criaderos, el control del nivel de agua en el tanque, no se bace desde el rebosadero de la pared, sino que se hace desde el desaguie. Este desaguie se continúa con un tubo exterior que actua regulando el nivel por vasos comunicantes. En el interior del tanque se coloca un filtro. central, de maila acoplado al desagàc, que pernite una mejor circulación de agua. Además, se pueden colocar filtros más grandes, con una mayor superficie de filtración. Como inconvenientes se puede citar que es más difícil sacarlos para la limpieza y que el desaggue ya no actúa como tal, ya quep las larvas y la suciedad quedarín retenidas por el filtro.

En cualquiera de los dos casos, al comienzo del cultivo larvario se utilizan mallas tupidas, de 62 a 80μ Progresivamente, conforme las larvas van creciendo y se alimentan de presas de mayor tamatio, se irán cambiando estas mallas por otras de $125-150$ y $200-300 \mu$

Se ha de tener en cuenta que al utilizar mallas de diámetro reducido pueden taponarse con relativa facilidad. Asi, se babrain de limpiar diariamente e ir aumentando la superficio de filtración conforme se aumenta la renovación del tanque. Una malla obstruida puede ser responsable de que se pierda la producción de un tanque, ya que si entra mis agua de la que sale el tanque desbordari perdiéndose las larvas. Para evitar esto, ademís de aumentar progresivamente el diaimetro de la malla y la superficie de filtración. se pueden tomar dos medidas de precaución:

- diseriar el tunque de tal modo que tanto la salida del desaguée como la salida de la pared puedan actuar regulando el nivel de agua. Una de las dos será la encargada de regularlo, dotaindola de un filtro de la malla adecuada, La otra, quedari como rebosadero de emergencia, colocíndole una malla menos tupida.
- colocar una alarma de nivel en cada tanque, de tal modo que cuando el nivel de agua en el mismo ascienda por encima de lo aconsejable, suene una sirena de alarma, procediendo entonces el operario a limpiar el filtro.

Los tanques de cultivo larvario deben estar provistos de aire. Normalmente existen varios puntos de aireación, de tal modo que las presas se mantengan en suspensión y que se homogeinice el agua dentro del tanque. La aircacion debe ser suave y no crear turbulencias que pucdan molestar a las larvas. El aire se introduce por medio de finas mangueras (macarrones) que pueden abrirse libremente o estar dotados de difusores.

2.2. FACTORES FISICOS

Incluimos en este apartado lo referente a la temperarura, luz., salinidad, pH y presión total de gases.

2.2.1. Temperatura

En general, el cultivo larvario de las especies marinas que se describen a continuación (rodaballo, lenguado, dorada y lubina) se realiza a una temperatura que oscila entre 16 y $21^{\circ} \mathrm{C}$. Por debajo de $16^{\circ} \mathrm{C}$ el crecimiento larvario se hace demasiado lento.

En la mayoria de los casos. el agua de mar está a menor temperatura, por lo que habrí que calentarla antes de introducirla en los tanques, mediante una bomba de calor o una caldera. Si los tanques se mantienen en flujo abierto, la temperatura se mantendrá más o menos constantte. pero si están en flujo cerriado habri que mantencrles ta temperatura. Esto se puede conseguir bien mediante resistencias con termostato que se introducen en los tanques, o bien manteniendo toda la sala de cultivo larvario a la temperatura deseada.

Tanque de cultivo larvario. A. fitho.

Desarrollo larvario del Rodaballo ($\mathbf{1 9}^{\circ}$)

Primeros dias

Recién eclosionadas miden unos 3 mm de longitud y pesin entre 0,1 y 0.2 mg . Presentan muy poca actividad, flotando pusivamente en la superficie. Son simétricas, ciegas y se alimentun a expensas de las reservas de su saco vitelino. La boca y el ano están cerrados.

En los primeros dias comienzan a desarrollarse las aletas pectorales, los ojos se pigmentan y las larvas se vuelven más activas, comenzando a nadar. Hacia el tereer da de vida ya presentan ubiertas la boca y el ano. Auin les queda vitelo, pero ya son capaces de alimentarse. Su color se oscurece y empieza a observarse la vejiga matatoria.

5^{2} Día

El saco vitelino se reabsorbe totalmente hacia el quinto día de vida, y la gota de grasa desaparece totalmente el dia séptimo. La larva ya es capaz de nadar raipidamente y su ugudeza visual ha aumentado significativamente, siendo mucho más eficaces en la captura de las presas. La vejiga natatoria ya se encuentra totalmente hinchada y el color de la larva se vuelve más claro, abandonan la superficie del tanque y se distribuyen por toda la columna de agua.

15^{2} Día

Hacia el dia 15. ya funciona totalmente el estómago y las glándulas gástricas. La larva mide unos 7 $\mathrm{mm} y$, progresivamente, se hace plana y asimétrica.

$20^{\circ} \mathrm{Dia}$

El día veinte de vida, la larva mide cerea de 10 mm , y su peso oscila entre 5 y 8 mg . La metamorfosis estả comenzando y empieza la migración del ojo derecho. La vejiga natatoria esta bien desarrollada y las larvas tienen tendencia a subir a la superficie del agua.

30^{2} Dia

El dia treinta, la larva mide unos $15-20 \mathrm{~mm}$. El ojo derecho se encuentra en la parte de arriba de la cabeza y la larva comienza a abandonar la superficie del tanque y a volverse demersal, Este proceso dura unos 10 dias.

40-50 Dia

Hacia el dia 40-50 de vida termina la metamorfosis. El alevin de rodaballo vive ya en el fondo del tanque, y el ojo derecho está situado en la parte izquierda de la cabeza. La vejiga natatoria se ha reabsorbido totalmente, y la parte derecha del cuerpo (que estará a partir de aquí pegada al fondo) ha perdido su pigmentación. El peso medio oscila entre 0,1 y $0,15 \mathrm{~g}$.

Hay que tener en cuenta que la temperatura de cultivo larvario es normalmente mayor que la temperatura de incubación. Por ésta razón se debe aumentar esta temperatura poco a poco y progresivamente, tratando de que la larva no sufra debido a un cambio brusco. En algunas expecies se ha demostrado la conveniencia de realizar esta elevación de la temperatura al comienzo de la alimentación exógena, y no al inicio del cultivo larvario. Esto se debe a que la larva consume más eficazmente sus reservas vitelinas a temperaturas mais bajas (convo las utilizadas en la incubación).

2.2.2. Luz

Los tanques de cultivo larvario deben estar iluminados con algûn tubo fluorescente. El fotoperiodo y la intensidad luminosa varian de una especie a otra. En general, se utilizan fotoperiodos largos o incluso continuos (el cultivo de la lubina constituye una excepción) e intensidades luminosas no muy potentes.

2,2.3. Salinidud

Se suele utilizar la salinidad normal del agua del mar, aunque existen evidencias de que ciertas especies (por ejemplo, la lubina y el Jenguado) presentan buenos resultados a salinidades muy reducidas. En general se utilizan salinidades entre 30 y $38 \% \mathrm{~m}$

2.2.4. pH

Todo parece indicar que el pH mais adecuado en todos los cultivos larvarios es el del agua del mar (8 a 8,2).

2.2.5. Presión total de gases

La presión total de gases (PGT) es la suma de las presiones parciales de todos los gases (fundamentalmente oxigeno y nitrógeno) disueltos en el agua. La medida de la PGT se da en porcentaje de saturación, y en general no debe pasar del 102\%. Para medirla se usa un aparato denominado Saturómetro de Weiss.

2.3. CALIDAD DE AGUA. RENOVACIONES

Un criadero de peces marinos debe tener agua de buena calidad. Para ello, lo primero que se ha de tener en cuenta es su ubicación: que esté en un sitio no contaminado, con agua limpia, a ser posible oceánica.

El agua ha de ser filtrada por arena y posteriormente por filtros de cartucho hasta 561μ En algunas especies como rodaballo y lenguado, que requieren condiciones mas estrictas, puede considerarse la posibilidad de esterilizar el agua_ Otras especies, como dorada y lubina no requieren estas condiciones, y cuando están próximas al destete, puede ser suficiente con un agua de menor calidad de filtracióa (10μ).

Existen criaderos que utilizan recirculación de agua. Esto presenta la ventaja de que el gasto energético en
calentamiento de agua es menor, pero se requiere un filtro biológico para eliminar los compuestos nitrogenados tóxicos y un sistema para reoxigenar y esterilizar el agua. Cuando se usa un sistema de recirculación, la cantidad de agua recirculada no debe exceder del $80-90 \%$, introduciendo el $10-20 \%$ restante de agua nueva,

Los peces consumen oxigeno y excretan al medio, amoniaco. El aporte al medio de cultivo de oxigeno y la eliminación del amoniaco, se realiza mediante la renovación de agua (el aire aporta poco oxigeno, y además el cultivo larvario no admite una aireación enérgica). Ast, el caudal debe de estar regulado en cada momento en función de:

- Oxígeno, que no debe bajar de $4-5 \mathrm{mg} / \mathrm{l}$
- Amoníaco, cuyo nivel tóxico varía en función de Ia salinidad, pH y temperatura. En general, el amoniaco no debe exceder de $0,01 \mathrm{mg} / \mathrm{litro}$.
- Nitritos, cuyo valor debe ser inferior a $0,1 \mathrm{mg} / \mathrm{l}$ (aunque algunas especies resisten bien hasta $0,25-0,5 \mathrm{mg} /$).

Al crecer muy ripidamente las laryas en estas primeras fases, el caudal debe de aumentarse progresivamente. Se comienza con caudales bajos o incluso con flujos cerrados en los que se realizan renovaciones parciales. Al final del cultivo larvario, los caudales utilizados son mucho mayores, pudiendo llegar hasta $0,2-0,5$ renovaciones/hora.

En los primeros dias de cultivo larvario, es común mantener a las larvas sin renovación de aqua y añadir fitoplancton al medio (téenica del agua verde). Solamente se realizará alguna renovación parcial del agua, si los nitritos o el amoniaco aumentan demasiado. El fitoplancton presentan varias acciones beneficiosas sobre el cultivo:

- Permite que los rotiferos se sigan alimentando dentro de los tanques de cultivo.
- Mejora la calidad del agua (disminuye la concentración de los metabolismos nitrogenados tóxicos).
- Aumenta la concentración de oxígeno, debido a la fotosintesis del fitoplancton, ya que esta técnica se realiza siempre con fotoperiodo continuo.
- Puede constituir un filtro eficaz contra una intensidad luminosa demasiado fuefte.

Las especies de fitoplancton mis comuinmente utilizadas son Chlorella sp., Tetraselmis suecica e Isochirysix galhana, y se añaden a razón del $1-2 \%$ del volumen total del tanque al día.

2.4. INICIACION DEL CULTIVO LARVARIO

El cultivo comienza al eclesionar las larvas. Como la incubación de los huevos de poces marinos se realiza en tanques diseñados al respecto, to primero que se tiene que hacer es trinsferir los huevos a punto de eclosionar, o las larvas ya nacidas, desde los incubadores a los tanques de cultivo larvario:

- La transferencia de los huevos antes de su eclosión presenta la ventaja de que los huevos son mis resistente al manejo que las larvas. Sin embargo, tiene el inconveniente de que todos los restos de la eclosión (cáscaras vacías, huevos que no eclesionan y mueren, etc) se acumulan en el tanque de cultivo larvario, y pueden ocasionar problemas de infecciones. Ademais, el tanque de cultivo larvario no siempre está preparado para poder introducir los huevos sin eclosionar (los hucvos requieren unas condiciones adecuadas de temperatura y aireación).
- La transferencia de la larva eclosionada es el procedimiento más comúnmente usado. La larva puede transferirse recién eclosionada o bien esperar unos dias. En cualquier caso, hay que cambiarla siempre antes de que comience la alimentación exógena. El transporte de los tanques de incubación a los tanques de cultivo larvario, hay que realizarlo con mucho cuidado y \sin utilizar salabres (se realiza en cubos de plástico).

La densidad inicial en los tasiques de cultivo larvario oscila entre 20 a 100 larvas/litro.

2.5. ALIMENTACION

Recién nacidas se alimentan de sus reservas vitelinas, y a los 3-6 dias ya pueden capturar presas del medio, comenzando la alimentación exógena (en la lubina se retrasa un poco mís). En un principio, ésta consta de ratiferos o nauplius de Artemia, seguin el tamaño de la boca de la larva (mientras que la dorada y el rodaballo comienzan siempre a alimentarse del rotifero, la lubina y el lenguado pueden capturar desde el principio muplius de Aremia),

Al ir creciendo la larva, se les cambia progresivamente la alimentación, pasando de rotifero a nauplius de Artemia y a continuación a metanauplius de Artemia de dos dias. Esta alimentación con metanauplius de Artemia no se realiza en muchos criaderos, que prefieren emplear nauplius durante todo el cultivo larvario. El motivo es que el cultivo de metanauplius es más dificultoso que el cultivo de nauplius. Por otro lado, los cambios en el tipo de presa no se realizan bruscamente, sino que se solapan ambos durante algunos dfas.

Las presas se administran "ad libitum" (a saciedad), intentando mantener niveles altos de las presas dentro de los tanques para que las larvas puedan comer todo lo que quieran. Las concentraciones que se intentan mantener son de $10-20$ rotiferos $/ \mathrm{ml}$ de cultivo y 1-5 Artemia/ml, según el tamaño de la larva.

Para ello se procede diariamente al conteo de la densidad de presas en el tancque, completándolos hasta los niveles deseados. Este proceso debería realizarse varias veces al día, afhadiendo el zooplancton en varias dosis para mantener permanentemente las concentraciones. No obstante, esto ocasionaria mucho trabajo y en la prictica lo que se hace es contar una cantidad de zooplancton que han
ingerido las larvas, de tal modo que nunca les falte alimento. Se han probado distintos sistemas de dosificación automática del alimento vivo, pero aûn no se ha encontrado ninguno que funcione adecuadamente.

Las larvas de los peces marinos requieren ensu dieta elevadas cantidades de ácidos grasos poliinsaturados de cadena larga. Normalmente, la cantidad de estos ácidos grasos en la Artemia y rotifero es moderada o baja, por lo que se tiende a enriquecerlow con diferentes productos que los contengan antes de adicionárselos a las larvas.

Este enriquecimiento a veces también incluye otras sustancias como vituminas, minerales, etc. Estas técnicas de enriquecimiento mejoran considerablemente la calidad del alimento vivo.

También pueden utilizarse otra especies de zooplancton distintas al rotifero y la Artemia para la alimentación larvaria. Las más usadas son los copépodos, ya que presentan un perfil nutricional muy adecuado (tienen un clevado contenido en ácidos grasos poliinsaturados), pero su cultivo es dificil. Asi, suelen usarse como complemento a la alimentación tradicional con rotifero y Artemia cuando es posible recolectarlos del medio.

2.6. CRECIMIENTO Y SUPERVIVENCIA

En general, el crecimiento larvario de estas especies es bastante ríipido y se ve favorecido por fotoperíodos largos, por unas buenas condiciones del medio de cultivo y por una alimentación adecuada, tanto en cantidad como en calidad.

La supervivencia varia mucho de una espocic a otra, aunque no suele ser muy elevada. Una excopción la constituye el lenguado, con supervivencias que pueden superar el $60-70 \%$. La especie que presenta una menor supervivencia es el rodaballo, que a menudo no alcanza el $10-15 \%$.

Los principales picos de mortalidad larvaria aparecen en los cambios de alimentación, siendo especialmente crítico el paso de alimentación endógena (reservas vitelinas) a alimentación exógena. Otras mortalidades están relacionadas con el mancjo inadecuado de las larvas, con una mala calidad del medio (tanto sanitaria como calidad de agua) o con una deficiente alimentación, bien porque escasee o bien porque sus caracteristicas nutritivas no sean las mâs adecuadas.

2.7. TAREAS DIARIAS EN EL CULTTVO LARVARIO

Los trabajos rutinarios que se han de realizar diariamente en una planta de cultivo larvario de peces son:

- Limpieza de los filtros y del fondo del tanque y recuento de las larvas muertas. La limpieza del fondo del tanque se realiza por medio del desague central, abriendo un momento la válvula de purga. Cuando esto no es suficiente, se recurre a sifonurlo mediante una manguera fina, de 8 a 10 mm al inicio del cultivo larvario.
- Control de los parámetros fisico-químicos del agua como temperatura, oxigeno, nitritos, umoniaco, etc. En función de estos parametros, se procede a realizar la renovación del agua.
- Recuento de presas en el cultivo y ajuste de la alimentación hasta la cantidad descada. La adición del alimento debe efectuarse en varias dosis, y previamente hay que enriquecer las presas vivas.
- Observación del estado general de las larvas.

Una hoja de control del cultivo larvario de un tanque, podría ser como la indicada en este capítulo.

3 destete

El paso de alimento vivo a alimento inerte comienza a realizarse, seguin las especies, entre los $30-60$ dias, Mientras que en algunas especies esta adaptación es relativamente rápida, en otras es mucho más lenta y dificultosa.

3.1. TANQUES

Son de fibra de vidrio, circulares o cuadrados con las esquinas redondeadas. El volumen oscila, segén las especies entre 2 y $20 \mathrm{~m}^{3}$. Estain dotados de varios puntos de aireación y. a menudo, de alimentadores automúticos. El fondo suele ser bastante plano, teniendo una ligera inclinación hacia el centro donde presentan un desagiic. Exte desagiee está dotado de un filtro con una malla que suele oscilar entere las 150 y las 300μ durante los primeros dias del destete. Luego se sustituye por una malla mayor (500μ) o una rejilla fina.

Es frecuente, sobre toxdo en aquellas especies en las que el destete comienza cuando aún no ha terminado la metumorfosis, que el destete se inicie en los tanques de cultivo larvario. Entonces, se dota a Estos de un filtro con la malla indicada y unos dias después, cuando ya no se suministra Artemia at los tanques y las larvas están próximas al final de la metamorfosis (mejor cuando ya la han terminado), se transfieren los alevines a los verdaderos tanques de destete.

El motivo fundamental de este traslado es que los alevines son más resistentes al manejo que las larvas, pudiéndose realizar éste mediante pequenios salabres, cuando lo que trasladamos son alevines. Los tanques de destete se dotan entonces directamente de la malla central de mayor tamaño o de la rejilla.

3.2. FACTORES FISICOS

Estudiaremos la influencia de la temperatura, luz, salinidad y pH .

Lat temperatura es similar a la utilizada en el cultivo larvario, oscilando entre 16 y $21^{\circ} \mathrm{C}$. Hacia el final del

TANQUE: MES:

DIA	T	NO_{2}	NH_{3}	O_{2}	Caudal	Densidad de Presas M T	$\begin{aligned} & \text { Alimento Anadido } \\ & \mathrm{M} \quad \mathrm{~T} \end{aligned}$	Muctas	$\begin{array}{l\|} \hline \mathrm{N} . \\ \text { larvas } \end{array}$	OBSERVACIONES
1										
2										
3										
4										
5										
6										
7										
8										
9						-				
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										*
27										
28										
29										
30										
31										
DIA	T	NO_{2}	NH_{3}	O_{2}	Candal		Alimento añadido	Muertas	$\begin{gathered} \text { N." } \\ \text { larvas } \end{gathered}$	OBSERVACIONES

destete, cuando los alevines van a ser transferidos a la instalación de preeengorde(nursery), se les suele disminuir poco a poco la temperatura hasta dejarlos a la temperatura del mar.

Al inicio del destete, los fotoperiodos suelen ser largos, de 12 a 16 horas, y para ello, los tanques tienen encima tubos fluorescentes. Al final del destete, y si el criadero presenta luz natural abundante, suelen dejarse de utilizar los fluorescentes, permaneciendo los alevines con fotoperiodo e intensidad luminosas naturales.

La salinidad y el pH son las propias del agua del mar.

3.3. CALIDAD DEL AGUA. RENOVACIONES

La calidad del agua varia según las especies. En especies delicadas como el rodaballo, se suele mantener una calidad elevada, similar a la utilizada en cultivo larvario, introduciendo agua menos filtrada conforme van terminando la metamorfosis. En otras especies, como la dorada o la lubina, se suele utilizar agua menos filtrada (10μ) desde el principio, introduciendo al final del destete agua filtrada por arena o agua cruda, sin filtrar.

El caudal depende de la especie, de la densidad y de la temperatura y calidad del agua. En general utilizan ya renovaciones elevadas, que pueden llegar a 0.5 - 1 renovación/hora al final del periodo. Al utilizar caudales tan clevados, interesa que la temperatura del cultivo sea, tan pronto como se pueda, la misma del agua del mar, ya que si no es así, el gasto energético por calentamiento de agua será muy elevado.

3.4. INICIACION DEL DESTETE

Sobre esta cuestión han de hacerse dos precisiones previas:

- Generalmente, cuando más tarde se comienze el destete, mayor será la supervivencia del mismo.
- Cuando antes se realice, antes se dejará de añadir presas vivas. Esto supone un ahorro importante ya que la Artemia es bastante cara y, además, supone un ahomo considerable de mano de obra,

Por tanto, se debe optar por una solución intermedia, de tal modo que el destete se realice to antes posible \sin afectar exeesivamente a la supervivencia. Se ha comnprobado que los destetes realizados antes del comienzo de la metamorfosis dan resultados basiante peores en cuanto a supervivencia. Es por esto que el destete se suele iniciar una vez comenzada la metamorfosis, entre los das $30-60$ de vida, según las especies (en el lenguado, que realiza muy pronto la metamorfosis, se espera a que ésta haya terminado).

La densidad inicial suele oscilar entre los 1.000 a 2.500 alevines $/ \mathrm{m}^{2}$ utilizados en rodaballo, y los 5.000 a 10.000 alevines $\mathrm{m}^{3}{ }^{3}$ que pueden utilizarse en dorada y lubina.

3.5. ALIMENTACION

Normalmente, se realiza una adaptación progresiva a los grainulos de pienso, de tal modo que se mantiene unos dias la adición de Artemia a las larvas. Poco a poco, se va disminuyendo el número de tomas y la cantidad de Artemia, al tiempo que se aumenta la dosis de alimento inerte.

Es importante que el alimento sea atrayente a los peces, que se mantenga el mayor tiempo posible estable en el agua y en suspensión, y que tenga una buena palatibilidad. De lo apetecible que sca este primer alimenta o dieta de arranque para el pez, depende en gran medida el éxito del destete.

La dieta de arranque puede ser muy variada. En muchos criaderos, estí constituida primeramente por plancton (Artemia y copépodos) congelado. De este modo, se consigue que la transición hacia el pienso sea menos traumitica.

A continuacionn se puede pasar a dar pienso directamente, o bien continuar con dietas de arranque consistentes en alguna pasta húmeda compuesta por came de moluscos (fundamentalmente mejillón) o carne de pescado mezclados con los granulos. Estas pastas húmedas son aceptadas muy bien por los peces, pero presentan el inconveniente de que ensucian mucho el agua. Se tiende a utilizarlas cada vez menos, ya que actualmente se están comercializando dietas de arranque compuestas por granulos secos o rehidratables que dan buenos resultados.

ESQUEMA DE ALIMENTACIÓN DURANTE EL. DESTETE

1. Artemia vivu
2. Artemia viva + dieta de arranque
3. Dieta de arranque + pienso
4. Pienso

La dieta suele suministrarse "ad libitum", y se distribuye a mano hasta adaptar a los alevines al pienso. Una vez adaptados, la dosificación del alimento suele realizarse mediante comederos automáticos. El número de tomas suele ser bastante elevado (5 a 10 tomas al dia).

Unos dias después de que coman regularmente el pienso y estén bien adaptados a él. se les disminuye la ración, dejándola en el porcentaje comespondiente al peso y temperatura del agua de cada especie concreta. El tamaño del grinulo tambien depende de cada especie, observando que sea lo suficientemente pequelोo como para poder ser ingerido por el pez.

3.6. CRECIMIENTO Y SUPERVIVENCIA

En las especies de que tratamos, y excepto en el caso del lenguado, los alevines con un peso medio de 0.5 g o inferior, suelen estar ya perfectamente destetados y alimentándose con pienso seco.

La supervivencia oscila entre el 40 y el 85% segün las especies. En esta fase hay que extremar los cuidados sanitarios, ya que los alevines son bastante sensibles a infecciones. La limpieza del tanque es muy importante, sobre todo si se utilizan pastus humedas, ya que los restos de comida no ingeridos por los peces pueden ensuciar el agua y pudritse en el fondo del tanque.

3.7. TAREAS DIARIAS EN EL DESTETE

Las tareas diarias son similares a las realizadas en el cultivo larvario, teniendo en cuenta que al principio del destete se acentuian las tareas de limpieza, y que el tipo de alimentación es distinta.

Las pastas húmedas utilizadas como dieta de arranque, son preparadas en el criadero, y esto conlleva bastante trabajo. Además, las primeras alimentaciones inertes requieren mucha paciencia por parte del operario, dosificando la comida poco a poco y en distintos lugares del tanque, y observando cual es la respuesta a la misma por parte de los peces.

En esta fase, ya empiezan a realizarse muestreos y clasificaciones de alevines para distribuirlos por tallas y ajustarles la ración de alimento. La no clasificación de los alevines, en algunas especies, conlleva pérdidas de crecimiento en la población y dismninuciones en la supervivencia por problemas de canibalismo.

El muestreo de los tanques suele realizarse cada quince dias, tomando un número suficiente de peces; cuando la dispersión de tamanios encontruda es grande, se procede a la clasificación de los alevines. Asimismo, si la carga (Kg de pez $/ \mathrm{m}^{3}$) es elevada, se desdobla el tanque.

Al final del destete, y previamente al paso de los alevines a los tanques de preengorde, se debe realizar una clasificación. En algunos criaderos (sobre todo de dorada y lubina), se tealizan más clasificaciones, comenzando ya durante la metamorfosis, al comienzo del destete.

MALFORMACIONES Y PROBLEMAS PATOLOGICOS

Entre las malformaciones exqueléticas, las más comunes son la escoliosis, deformación dorso-ventral de la espina y la lordosis, deformación lateral de la misma. Aunque se ha demostrado que algunas de estas malformaciones pueden deberse a causas muy diversas (parasitosis, enfermedades bacterianas, temperaturas y salinidades extremas, etc), los motivos fundamentales son el estrés mecánico en la recogida de huevos, la ausencia de vejiga natatoria y una alimentación inadecuada, deficiente en aicidos grasos poliinsaturados.

Otro probiema, especialmente patente en el rodaballo, es la ausencia de pigmentación. A pesar de que en un principio se pensaba que estaba relacionado con el color
de los tanques y con la intensidad luminosa, actualmente se sabe que fundamentalmente es un problema nutricional ya que las larvas alimentadas con copépodos recolectados del medio natural, presentan una incidencia mucho menor de esta falta de pigmentación.

En los ültimos años, con las nuevas téenicas de enriquecimiento, ha disminuido considerablemente el porcentaje de estas dos malformaciones.

Otros problemas que pueden presentarse son la enfermedad de la burbuja y las infecciones causadas por bacterias.

La enfermedad de la burbuja y las mortalidades por embolias gaseosas, se deben fundamentalmente a un exceso de saturación de gases en el agua del mar. En lat mayoria de las especies se ha comprobado que una presión de gases superior al 102% ocasiona problemas y mortalidades de las larvas. Para disminuir la sobresaturación de gases, se puede recurrir a distintos procedimientos: columnas desgasificadoras, aireación de la masa de agua, aumento de la superficie de contacto agua/aire, elc.

Entre las enfermedades causadas por bacterias, la mis comuin es la vibriosis. Estas infecciones son especialmente frecuentes al final del cultivo larvario y en el destete. y pueden ocasionar mortalidades bastante elevadas en la población. El tratamiento contra cllas consiste en antibióticos, que pueden administrarse via oral o en baño, o agentes quimioterapeutiticos como el formol, que se administra on baño. No obstante, para evitar estas infecciones lo más importante es seguir una serie de criterios sanitarios.

5 CRITERIOS SANITARIOS

Un manejo inadecuado en los tanques de larvas y alevines puede ocasionar infecciones muy graves en la población cultivada. Habrá que tener mucho cuidado en observar los siguientes criterios sanitarios;

- Controlar la calidad sanitaria del alimento, sobre todo las presas vivas, disminuyendo su carga bacteriana si es elevada.
- Renovar adecuadamente los tanques. Esto es muy importante en el destete si se usan pastas húmedas, ya que ensucian mucho el agua.
- Limpiar bien los filtros, fondo y paredes de los tanques, de tal modo que no se acumule suciedad, restos de cominda, ni organismos muertes en los mismos. Hay que mantener los tanques lo más limpios posible, no usando filtros más tupidos de lo necesario.
- Desinfectar los utensilios después de usados. Esto es especialmente importante si se usan los mismos utensilios para tanques distintos.
- Aunque no es imprescindible, se puede esterilizar el agua durante el cultivo larvario si presenta una carga bacteriana elevada. Si se usa agua recirculada, hay que esterilizar siempe.
- Desinfectar muy bien los tanques después de usados y antes de introducir noevas larvas.
- Limpiar y desinfectar la red de agua y las dependencias de alimento vivo y cultivo larvario todos los años. Si es posible, realizar esta operación tantas veces como ciclos de utilización de los tanques se empleen.
- Realizar periodos de "cuarentena" si se introducen en el criadero huevos o larvas que provienen de otras intalaciones.
- Evitar variaciones bruscas de los parimetros de culrivo, ya que podrían estresar a los alevines y debilitarlos, con el consiguiente riesgo de contraer enfermedades.
- Observar en general todos los criterios sanitarios de una planta de cultivo de peces, teniendo en euenta que larvas y alevines son mais sensibles.

6 TRANSPORTE DE LARVAS Y ALEVINES

Las instalaciones de cultivo larvario de peces, sueIen transportar a los aievines una vez que han terminado ta metamorfosis y estain destetados.

Este transporte se realiza a otras instalaciones diferentes, las instalaciones de preengorde y engorde, donde se completará el ciclo de cultivo y serín mantenidos hasta que alcancen la talla comercial. El transporte se realiza en camiones isotermos con cubas o tanques de agua de mar.

ELEMENTOS DE QUE DEBEN ESTAR DOTADOS LOS CAMIONES DE TRANSPORTE DE ALEVINES

- Un filtro biolôgico
- Una bomba para crear un circuito cerrado de agua
- Un compresor de aire
- Un sisterna de inyección de oxigeno

Lo que se hace es crear un circuito cerrado de agua, de tal modo que el agua del tanque de transporte esté constantemente en movimiento y pasando por el filtro bioIógico. Asi, se logra eliminar el amoníaco que exeretan los peces. El tanque está también provisto de varios puntos de aireación y de oxigenación, de tal modo que se pueda inyectar oxigeno, proveniente de alguna botella, en el tanque. Si el transporte es largo, el camión deberi parar en el camino para cambiar el agua e introducir agua limpia.

Cuando se va a realizar un transporte, no se debe alimentar a los peces, ni el dia antes, ni durante el transporte. Asimismo, se debe mantener la temperatura baja (es por esto que se utilizan camiones isomermos), evitando que suba durante el transporte. Durante el mismo, además de la
temperatura se debe controlar la concentración de oxígeno. del tal modo que se mantenga entre un 70 y un 100% de saturación, y el nivel de amonfaco, cambiando el agua si aumenta por encima de los niveles aconsejables.

En la práctica es fácil medir el oxigeno ripidamente con la ayuda de un electrodo, pero el amoníaco es más dificil de medir, ya que requiere un tiempo. Se debe intentar que los alevines viajen sin ser molestados, de tal modo que no se estresen y su consumo de oxigeno sea lo menor posible.

La cuba o tanque de transporte ha de ir berméticamente cerrada, para no perder agua. Estả dotada de una pequeña tapa que se puede quitar con facilidad para medir el oxigeno, y es conveniente que quede alguna parte transparente en el tanque sin tener que abrir la tapa.

Cuando lo que se traslada son larvas, el transporte puede realizarse en barreños o cubas pequeñas con agua de mar, a los que se les inyecta aire a oxigeno durante el viaje (no es necesario el filtro biológico ni la bomka para recircular el agua). También puede hacerse en bolsas de plástico que se rellenan hasta la mitad con agua y la otra mitad con oxigeno, cerrándolas herméticamente. Las larvas pueden transportarse a densidades elevadas, de hasta 2.000 a 5.000 laryas por litro, en los casos de dorada y lubina, siempre que el tiempo de transporte no exceda de las 24 horas.

A. Barref̃o o cuba para transporte de larvas.

1. Ahe u origuno. 2. Tapo a pestión 3. Anillo lever.
B. Bolsa para el transporte de larvas.
2. Tapa. 2. Material de nelaro. 3. Aoba de pĺática. 4. Aumbestara de oxiguna. 5. Nivel de ogua 6. Feces. 7. Capa asilante

Actividades

Autoevaluación

Relaciona ambas series de términos

A	Sparas aurata	$\mathbf{1}$	Lenguado		
B	Dicentrarchas labrax	$\mathbf{2}$	Rodahallo		
C	Scolphtalmus maximus	$\mathbf{3}$	Dorada		
D	Solea solea	$\mathbf{4}$	Lubina		

Coloca por el verdadero orden en que suceden los siguientes términos referidos al desarrollo y fase de cultivo de un pez:

Cultivo larvario - Preengorde - Destete - Incubación - Eclosión

Compara los tanques de cultivo larvario y los tanques de la sala de destete, en los siguientes aspectos:

	CULTTVO LARVARIO	DESTETE
Materiales		
Forma		
Volumen		
Aireación		
Malla de los filtros		
Iluminación		

Aplicaciones

11
Prepara un recipiente de unos pocos litros como si fuera un tanque de cultivo larvario, incorporándole todos los aparatos que permiten el control de los distintos factores físico-quimicos del agua que pueden afectar a los peces.

Sobre el recipiente anterior, escribe las tareas que babría que realizar durante las primeras semanas, suponiendo que en dicho recipiente pudiera disponerse de agua circulante.

Discina un recipiente para el transporte de larvas en coche desde, p.ej., Vigo-Madrid. i Podrias realizar un transporte de larvas de peces que durara, p. ej.72 horas? ¿Cómo?

Conoce tu entorno

El empleo de comederos automatiticos está muy extendido en todas las industrias de cultiva o cría de animales. Cita algunas de las instalaciones de este tipo que, ubicadas en tu entorno, empleen comederos automáticos y otras que empleen comederos con distribución manual del alimento.

Para la cria de peces es importante que el pienso suministrado de calidad nutritiva y atractivo para el animal. Lo mismo sucede en la preparación de piensos para la cria de otros animales. Investiga en tu entomo sobre algunos de los piensos empleados en la cría de animales no marinos y estudia que elementos "atractantes" se le añaden.

2
 Cultivo de Rodaballo

1. Desarrollo larvario

2. Cultivo larvario

2.1. Tanques y densidad
2.2. Factores fisico-quimicos. Fencvaciones
2.3. Almertación
2.4. Creciricrifo y supervivencia

3. Destete

3.1. Tanques y densidad
3.2. Factores fisico-quimicos. tensivo

Renovacianes
3.3. Alimentación
3.4. Creciriento y supervivancia
4. Malformaciones y problemas patológicos
5. Cultivo extensivo y semiex-

Contenido

DESARROLLO LARVARIO

El desarrollo de la larva de rodaballo dura unos $40-50$ dias a una temperatura de cultivo larvario de $19^{\circ} \mathrm{C}$. En los primeros estadios, la larva es pelágica, y va a ir sufriendo progresivamente profundos cambios hasta hacerse bentónica al final de la metamorfosis.

En los primeros estadios de vida, la larva es simetrica y pelágica. Hacia el dáa 15 - 20 de vida (a una temperatura de $19{ }^{\circ} \mathrm{C}$), la larva comienza la metamorfosis, Progresivamente se volverá asimétrica, completarí la migración del ojo y se volverá bentónica. La metamorfosis se completa en 40 o 50 dias, adquiriendo el alevin un peso entre 0,1 y $0,15 \mathrm{~g}$.

CULTIVO LARVARIO

2.1. TANQUES Y DENSIDAD

Los tanques son de fibra de vidrio, circulares y con el fondo cónico o redondeado. Presentan un desagüe central y un rebosadero. El filtro tiene una malla que al principio del cultivo es de unas $80 \mu y$ que se aumenta progresivamente hasta que al principio del cultivo es de unas 80μ y que se aumenta progresivamente hastat
terminar con una de 150 a 300μ. Los tanques tienen varios puntos de aireaciôn, de poca intensidad. Su volumen oscila entre 2 y $5 \mathrm{~m}^{3}$, con alturas de agua no superiores a $1-1,2 \mathrm{~m}$. Su color suele ser oxcuro, aunque no está bien demostrada la incidencia del color sobre las larvas. Parece ser que un fondo de color negro ayuda a una mejor visualización de las presas por parte de las larvas.

La densidad inicial de siembra debe oscilar entre las 40650 larvas/litro, aunque en algunos criaderos se utilizan densidades menores, de 20 a 30 larvas por litro.

2

 dencia del color sobre las larvas. Pareee ser que un tondo de color negro ay har a

Desarrallo larvario de rodaballo. |Segin Bomabà)

2.2. FACTORES FISICO-QUIMICOS. RENOVACIONES

El rango de temperaturas oscila entre los 16 y los $20^{\circ} \mathrm{C}$, estando el óptimo sobre los $18-19{ }^{\circ} \mathrm{C}$. Como la incubación se realiza a temperaturas más bajas, hay que aumentarla poco a poco, progresivamente. Como se indico anteriormente, y para tener una reabsorción más eficaz del vitelo, interesa efectuar este proceso a partir de la primera alimentación. En el resto del cultivo larvario, lat temperatura se mantiene constante.

Las larvas suelen cultivarse a una salinidad de 34 a 38% c, aunque a veces se cultivan a salinidades menores, del orden del 20% sin observar diferencias significativas.

La intensidad luminosa más conveniente no estii suficientemente demostrada en el rodaballo. De un lado se sabe que la captura de las presas por parte del rodaballo aumenta con altas intensidades de luz, pero por ofro lado se ha visto que intensidades fuertes lo estresan, tendiendo las larvas a irse al fondo buscando la oseuridad. Normalmente se utilizan pantallas fluorescentes encima de los tanques y la intensidad luminosa oscila entre 1.000 y 2.000 lux.

El fotoperiodo suele ser continuo hasta el inicio de la metamorfosis, momento en el cual se comienza a disminuir el mismo, dejando a los peces cada día 6 a 8 horas de oscuridad.

Las renovaciones de agua en los tunques de cultivo han de ser tales que mantengan una buena calidad de agua. Deben medirse diariamente amonaco, nitritos y oxigeno, y ajustar el caudal para que se mantengan en límites aceptables.

En general, se suele mantener el cultivo en flujo cerrado durante los 5 a 10 primeros dias, realizando solamente renovaciones parciales si el nivel de los compuestos nitrogenados se eleva demasiado. A partir de este momento comienzan a darse renovaciones continuas, empezando con renovaciones bajas del orden de un 5% a la hora y umentando la tasa de renovación hasta finalizar el cultivo larvario con caudales del orden de 0,2 a 0,3 renovacionesfhora o incluso superiores. Sobre este esquema existen variaciones, y hay criaderos que mantienen renovaciones continuas desde el primer día.

Las larvas de rodaballo son bastante exigentes en cuanto a filtración del agua, utilizíndose normalmente agua filtrada a $1-5 \mu$. En ciertos criaderos se esteriliza el agua, pero no en todos, ya que la esterilización del agua es un proceso costoso. En general, bastará con filtrar el agua a I μ si el criadero está ubicado en un sitio adecuado, Algunos criaderos utilizan agua recirculada y, en este caso, si que es aconscjable esterilizar el agua después de la filtraciôn.

2.3. ALIMENTACION

La larva recién eclosionada es incapaz de alimenturse del medio, y se nutre de sus reservas vitelinas, La ali-
mentación exógena comienza el tercer dia, aunque hasta I 62 dias después, la larva es poco eficaz en la captura de presas.

La alimentación exógena comienza con el rotifero, Brachionas plicatilis y dura hasta el dia 12-15. El rotifero deba mantenerse en el tanque a una concentración de 10 rotiferos/ml, para lo cual se ha de añadir en varias dosis. Normalmente, sobre todo si se mantiene el tanque en circuito cerrado, se adiciona también fitoplancton. Algunos cultivadores colorean el rotifero (con carofilo rojo) para aumentar su percepción por parte de la larva, pero no es una técnica muy extendida.

Hacia el dia 10, se comienza a añadir a los tanques nauplius enriquecidos de Artemial Las larvas de rodaballo se acostumbran ripidamente a Artemia, prefiriéndola antes que el rotifero. La alimentación con Artemia dura ya hasta el destete. La concentración de los nauplius en los tanques de cultivo oscila entre 1-3 nauplius/ml al principio, hasta 5 o mas nauplius/ml al final del cultivo larvario. A partir del dia 20 de vida pueden comenzar a sustituirse los nauplius por metanauplius de dos dias, pero la mayoria de los criaderos utilizan durante todo el periodo solamente nauplius.

Estia demostrado que el uso de copépodos en la alimentación larvaria de rodaballo, mejora los resultados en cuanto a crecimiento y supervivencia. Pueden utilizarse nauplius de copépodos en lugar de rotifero, asi como copepoditos y copépodos adulios en lugar de la Artemia. El principal problema es que el cultivo de copépodos es difficil y no se realiza a nivel industrial. Algunos criaderos recurren a recolectarlo del medio y utilizarlo como un suplemento en la alimentación larvaria tradicional de rotifero y Artemia. Las técnicas extensiva y semiextensiva (que se traturin mis adelante), si que usan los copepodos como principal fuente de alimentación.

Rodaballo.

2.4. CRECIMIENTO Y SUPERVIVENCIA

El crecimiento de la larva de rodaballo es muy rípido. Recién nacidas pesan entre 0,1 y $0,2 \mathrm{mg}$. A los 20 días, su peso ha aumentado hasta 6.8 mg . y al final de la metumorfosis, su peso oscila entre 0,1 y $0,15 \mathrm{~g}$. Su talla también aumenta considerablemente, pasando de los 3 mm que miden al nacer, hasta unos 25 mm al final del periodo larvario.

En general, la supervivencia en el cultivo larvario del rodaballo es bastante baja. A nivel experimental se han conseguido supervivenctias de hasta un 25 o un 30%, pero en la práctica y a nivel industrial, raramente se sobrepasa el $10-15 \%$.

DESTETE

El destete suele iniciarse en el rodaballo cuando la metamorfosis está próxima a finalizar (hacia los 40 dias de vida). Se ha observado que si el destete se comienza antes, sobre los 25-30 dias de vida con un peso de las larvas inferior a 50 mg , los resultados obtenidos en cuanto a la supervivencia, son peores. Orros criaderos retrasan el inicio del destete hasta el dia 60 de vida, cuando los peces han terminado la metamorfosis. En este caso, la mortalidad sc disminuye ligeramente, pero se alarga excesivamente el periodo de alimentación con Artemia.

3.1. TANQUES Y DENSIDAD

Se utilizan tanques circulares o cuadrados con las esquinas redondeadas, y con el fondo plano con una ligera inclinación hacia el centro, donde se coloca un desagūe. Están dotados de aireación, y el desagile central está provisto de un filtro de malla. Este filtro es al prinecipio del destete (cuando aún se añade Artemia) de unas 200 a 300μ, sustituyCndolo mis adelante por una fina rejilla. Si se inicia el destete en los tanques de cultivo larvario, habrá que tener en cuenta que el alevin es bentónico, a fin de transferirlos a estos nuevos tanques de fondo aplanado cuando esté terminada la metamorfosis.

El volumen de estos tanques de destete oscila entre 2 y $4 \mathrm{~m}^{3}$, y la densidad inicial oscila entre 1.000 y 2.500 alevines $/ \mathrm{m}^{3}$.

3.2. FACTORES FISICO-QUIMICOS. RENOVACIONES

La temperatura es similar o ligeramente inferior a la utilizada durante el cultivo larvario, $16-18{ }^{\circ} \mathrm{C}$. Al final del destete se les puede ir disminuyendo la temperatura hasta equiparurla a la del agua del mar.

La luz puede ser natural o artificial. Cuando se utiliza luz artificial, se recurre a fotoperiodos largos, de 14 a 16 horas, y a intensidades luminosas inferiores a las urilizadas en cultivo larvario, del orden de 500 a 1.000 lux.

TIPO DE ALIMENTO

Alimentación en el cultivo larvario del Rodaballo

Curva de crecimiento del Rodaballo (Scophthalmus maximus).

Al principio se usa una calidad de filtracion en el agua similar a la empleada en cultivo larvario, disminuyéndoles poco a poco el grado de filtración. Es importante mantenerles agua filirada, ya que en esta fase son muy susceptibles a contraer enfermedades.

La renovación de agua es mayor que la usada en cultivo larvario. Hay que mantener al menos 4 mg de oxigeno/litro a la salida del tanque. Al inicio se realizan 0,2 o 0,3 renovaciones por hora, aumentándolas hasta llegar al final a 0,5 o incluso más renovaciones/hora (logicamente esto depende entre otros factores de la densidad de alevines en el tanque).

3.3. ALIMENTACION

La adaptación a la dieta inerte, depende fundamentalmente de la edad y del estado general del rodaballo. Cuanto mayor y mejor estado fisiológico presente, más rípida scrâ la adaptación.

Al inicio del destete se utilizan gránulos con un diámetro de 0.4 a 0.5 mm , y se suministran "ad libitum".

Supervivencia en el cultivo larvario del Rodaballo

La escasa supervivencia de las larvas de rodaballo (apenas un 15%) en los cultivos industriales, estif relacionada con la existencia de tres periodos críticos:

- En los primeros días, hasta la apertura de la boca. En esta fase, la mortalidad sucle oscilar entre un $5-20 \%$, y se debe fundamentalmente a larvas defectuosas.
- Hacia los dias 6 a 8, la mortalidad puede ser muy elevada, de hasta un 60% o mais. Es la fase más crifica, debiéndose esta baja supervivencia al inicio de la alimentación exógena.
- El tercer período critico se produce a los 1520 dias. La mortalidad en este período es muy variable, y se ocasiona por problemas patológicos del tipo de infecciones o por problemas nutritivos relacionados con una mala calidad del rotifero o la Artemia. Si se mantiene el cultivo en unas condiciones asépticas y se obtiene una buena calidad nutritiva en el zooplancton, la mortalidad será baja, pero si no es así, la mortalidad puede dispararse y ser muy alta. En esta fase las larvas son también muy sensibles a la calidad del agua y, problemas del tipo de sobresaturaciones de gases pueden ocasionar pérdidas importantes.
para ir pasando, al transcurrir el tiempo, a grinulos mayores de 0,6 a 0,8 mm, y a una disminución de la ración. EI múmero de tomas ha de ser elevado, y se hace aconsejable el uso de alimentadores automáticos una vez que el alevin acepta los grainulos con regularidad.

3.4. CRECIMIENTO Y SUPERVIVENCIA

El periodo de destete dura aproximadamente 20 dias, terminando a los 60 dias de vida del alevin, cuamdo tienen un peso medio cercano a los $0,5 \mathrm{~g}$. La supervivencia es alta, oscilando entre el 50 y el 85%, dependiendo del estado de los alevines.

MALFORMACIONES Y PROBLEMAS PATOLOGICOS

La larva de rodaballo es muy sensible, y hay que mantener unas condiciones sanitarias adecuadas durante todo el cultivo. De no ser asi, la larva estáa expuesta a contraer infecciones bacterianas, entre las cuales, la vibriosis es la mas común. Estas precauciones hay que exienderlas a la época del destete, siendo conveniente vacunarlas oralmente contra la vibriosis tan pronto sea posible (al finalizar el destete).

En cuanto a malformaciones, el problema más común es la falta de pigmentación. Hace unos años, el porcentaje de alevines mal pigmentados cra muy grande, afectando a menudo a la mayoría de la población. Actualmente este problema ha disminuido notablemente. Se cree que era debido a un problema de nutrición, y con las nuevas técnicas de enriquecimiento y alimentación a base de copépodos, se están consiguiendo en muchos sitios lotes de alevines con un porcentaje superior al 90% de hien pigmentados.

5 CuLTIVO EXTENSIVO Y SEMIEXTENSIVO

Estos cultivos se realizan fundamentalmente en Noruega y Dinamarca, y se basan en alimentar las larvas de rodaballo con copépodos. Utilizan tanques grandes, de unos $20 \mathrm{~m}^{3}$ o superiores, que llenan con agua y abonan para producir un bloom de fitoplancton. Posteriormente añaden a estos tanques zooplancton que han recolectado previamente del mar mediante el uso de mallas de 60 a 800μ de diámetro.

Unos dias más tarde añaden a estos tanques las larvas de tres dias de vida, de tal modo que se alimenten desde el principio de estos copépodos. La concentración de larvas es muy baja, del orden de 0,1 larva/litro o inferior, y las dejan desarrollarse y alimentarse en estos tanques hasta que tienen aproximadamente un mes de vida. Si durante este tiempo observan que en algún momento disminuye la concentración de copépodos dentro del tanque, añaden nuevos individuos capturados del mar.

Al cabo del mes, cuando extraen las larvas, obtienen supervivencias muy elevadas, que pueden Ilegar hasta el 40 60%, y tasas del $95-100 \%$ de rodaballos bien pigmentados.

Otra variante tambien utilizada, consiste en cerrar una superficie grande de agua, a modo de un gran estanque de agua salada. La fertilizan para producir un bloom de fitoplancton y un posterior bloom de zooplancton, y afladen al medio sustancias selectivas que maten a los posibles depredadores de este zooplancton.

Curva de supervivencia del rodaballo durante el cultivo larvario.

El cultive larvario del rodaballo lo realizan en tanques de volutmenes intermedios en los que mantienen a las larvas con un flujo continuo de agua cargada de zooplancton (en su mayoria copépodos) que toman del estanque. De este modo, están introduciendo continuamente con el agua una elevada concentración de copépodos que servirá para la alimentación larvaria. Los resultados obtenidos en cuanto a supervivencia y porcentaje de alevines bien pigmentados, suelen ser también muy elevados.

Curva de supervivencia del rodaballo durante el destete.

Alimentación del Rodaballo en la fase de Destete

Lo más usual es comenzar la alimentación añadiendo el alimento inerte a partir de los 40 das de vida. Durante 5 a 10 dias se continưa alimentándolos con Artemia viva, para pasado este periodo, dejarlos exclusivamente com una dieta inerte. En general pueden usarse tres tipos de dietas de arranque:

- Gránulos o pastas húmedas

Presentan un contenido en agua superior al 40% y se fabrican a partir de carne de mejillón, vitaminas, aceites de pescado y a veces Artemia congelada. Son bien aceptados por los alevines, pero presentan el inconveniente de que son muy inestables en el agua y la ensucian mucho.

- Granulos secos rehidratables

De bajo contenido en agua, son peor aceptadas por el rodaballo, por lo cual a menudo se les incorpora algún atrayente justo antes de suministrársela. Son hastante estables en el agua

- Gránulos encapsulados

Estas microparticulas son muy estables, pero son mal aceptadas por el rodaballo y su valor nutritivo no es constante. No son muy utilizadas.

Actividades

Autoevaluación

1
Señala las magnitudes ideales en el cultivo de rodaballo para cada uno de los enunciados que se propone:

CONCEPTO	MAGNITUD
Densidad de larvas en el cultivo larvario	
Duración del desarollo larvario	
Densidad de alevines durante el destete	
Temperatura en tanques de cultivo larvario	
Tempenatura del agua durante el destete	
Horas de oscuridad en el cultivo larvario	
Horas de oscuridad durante el destete	
Renovacionesphora dunute el cultivo larvario	
Renovacionesfora hacia el final del destete	
Peso medion del rodatallo al final del destete	

¿Qué es la técnica del agua verde? ¿Por qué recibe ese nombre?

Aplicaciones

Señala algún otro animal marino que durante su desarrollo pase de una a otra fase:

FASE 1/FASE 2	ANIMALES
Pelágica a Bentónica	
Planctónica a Bentónica	
Planctónica a pelágica	

Señala lus principales ventajas e inconvenientes de emplear en la dieta de arranque del rodaballo:
A. Gránulos huimedos
B. Grínulos secos hidratados
C. Gránulos encapsulados

Conoce tu entorno

La migración del ojo y la asimetria de la larva de rodaballo son manifestaciones típicas de un determinado mecanismo en la evolución de las especies animales. ¿Podrias decir cuâl es ese mecanismo y qué otros animules presentan fenomenos semejantes?

Establece las similitudes y diferencias entre las metamorfosis de las siguientes especies y grupos de animales:
A. Rodaballo
B. Rana
C. Mariposa de la seda
D. Nécora
F. Mejillón

DESARROLLO LARVARIO

El desarrollo larvario de la dorada dura entre 50 y 60 dias a la temperatura de $20^{\circ} \mathrm{C}$., desde que mide unos 2,5 a $3,0 \mathrm{~mm}$ y pesa entre 0,1 y $0,15 \mathrm{mg}$, hasta que sufre la metamorfosis, cuando las larvas miden ya unos 10015 mm .

2 CULTIVOLARVARIO

2.1. TANQUES Y DENSIDAD

Los tanques son similares a los usados en el cultivo larvario de otros peces marinos. Son de poliester, circulares y con el fondo redondeado, presentando una salida central y otra en superficie. El filtro para el desagüe tiene una malla cuyo diámetro aumenta a lo largo del cultivo, desde 62-80 μ al principio, hasta $150-200 \mu$ al final. El color de los tanques es claro.

El volumen oscila entre $1-2 \mathrm{~m}^{3}$ hasta $5-10 \mathrm{~m}^{3}$. La altura de los tanques varia entre 80 y 120 cm . La densidad inicial en los tanques de cultivo larvario suele variar entre 50 y 100 larvas/litro.

2.2. FACTORES FISICO-QUIMICOS. RENOVACIONES

La temperatura óptima de cultivo es de $19-21^{\circ} \mathrm{C}$ y la salinidad oscila entre $30-38 \%$ es El fotoperiodo sucle ser continuo, hasta el comienzo de la alimentación con Arternia. En éste momento se pasa a un fotoperiodo discontinuo, con 12-16 horas de luz y el resto de oscuridad. La intensidad es moderada ya que, como se ha dicho, las larvas tienden a refugiarse en aquellos lugares del tanque con menos luz. En general, no debe superur los 1.000 lux.

El agua suministrada a los tanques debe ser de elevada calidad, usualmente filtrada por cartuchos hasta 1μ y puede provenir de un circuito abierto, del exterior, o de un circuito cerrado (agua recirculada). En éste último caso, debe pasar por filtros biológicos y ser esterilizada por luz ultravioleta. Hacia el final del cultivo larvario y comienzos del destete, se sucle utilizar ya agua con un menor grado de filtración (5-10 μ).

El caudal dependerai de los niveles de nitritos, amomiaco y oxigeno, Suele comenzarse con flujos cerrados o renovaciones muy pequeñas, del orden de un $3-5 \%$ a la bora, para terminar, ya iniciado el destete, con renovaciones del orden de un 25 a un $50 \% /$ hora.

Durante los primeros 10 a 15 dias de cultivo es muy utilizada la técnica del agua verde. Como ya se explicó, consiste en mantener los tanques en flujo cerrado, sin renovación de agua, manteniendo en el tanque una mezala de agua y fitoplaneton (un 1-2\%). Cada dia se añade un poco de fitoplancton, y si los niveles de amoniaco y nitritos aumentan, se procede a dar alguna renovacion parcial, del orden de un 25 a 50% del tanque. Alrededor del 10 al 15 dia, ya se deja el tanque con renovación continua.

2.3. ALIMENTACION

Hacia el tercer o cuarto dia, cuando la larva abre la boca, se hace necesaria la presencia de alimento en el tanque. Las larvas se alimentan primeramente de rotifero, Brachionas plicarlis, que se debe de mantener en el tanque a concentraciones que oscilan entre 10 a 20 rotiferos por mililitro. El rotifero se debe adicionar en varias tomas, para que la concentración en el mismo se mantenga siempre a exos niveles.

También se suele añadir en estos primeros dias fitoplaneton al tanque, a razón de aproximadamente el 1% del volumen al día.

Recién nacida, la larva de dorada tiene la boca muy pequefla, con un diametro aproximado de 100μ. Debido a ésto, muchos cultivadores prefieren usar, en los 5 primeros dias de alimentación, cepas de rotifero de pequefio tamaño.

Hacia el dia 25-30, comienza a sustituirse el rotifero por nauplius enriquecidos de Artemia. El cambio de alimentación no es brusco, realizindose a lo largo de 4 a 5 dias en los cuales se va disminuyendo la concentración de rotifero en los tanques y aumentando la de nauplius, Al principio, se añade a razoin de 1 nuuplius/ml, aumentando esta cantidad hasta llegar a 3-5 nauplius $/ \mathrm{ml}$.

Hacia el dia 35-40, se preden sustituir los nauplius por metanauplius de 2 dias, con el cuidado de hacerlo progresivamente y manteniendo una concentracion similar hasta el destete. No obstante, ya se ha comentado que el cultivo de metanauplius es más dificultoso y, por esto, muchos criaderos prefieren utilizar nauplius enriquecidos, aunque ésto les suponga gastar más cantidad de Ariemia para alimentar a las larvas.

En muchos criaderos, es común usar nauplius recién eclosionados en la transición entre rotifero y nauplius enriquecidos. Estos nauplius recién eclosionados pueden comenzar a añadirse entre los dias 18 y 20 , y se mantiene su adición hasta el día 30. En éste caso, se puede dejar de suministrar rotifero unos días antes, pero al no poder enriquecer estos nauplius, pues tienen la boca cerrada, hay que elegir cepas de Artemia con un gran contenido de ficidos grasos poliinsaturados.

2.4. CRECIMIENTO Y SUPERVIVENCIA

Al igual que las demás larvas de peces marinos, su erecimiento es bastante ripido. Tras la eclosión miden entre 2,5 y $3,0 \mathrm{~mm}$ y su peso es de 0,1 a $0,15 \mathrm{mg}$. Al final del cultivo larvario miden entre $10-15 \mathrm{~mm}$, y su peso es de $30-60 \mathrm{mg}$.

La supervivencia ha aumentado mucho en los ültimos años, pudiendo situarse actualmente entre un 15 y un 35%. Las mayores morialidades se centran en los cambios de alimentación, principalmente en los primeros dias de alimentación exógena.

Desarrollo de la vejiga natatoria en dorada (5parus aurata). (Segin Chatain!

3
 DESTETE

Sucle comenzar entre los dias 45 a 60 , coincidiendo con la metamorfosis y el final del desarrollo larvario. Su duración es de unos 15-30 dias, estundo las larvas adaptadas totalmente a la alimentación inerte hacia los $70-80$ dias, cuando tienen un peso medio de 0,1 a $0,3 \mathrm{~g}$.

3.1. TANQUES Y DENSIDAD

Los tanques son también de filira de vidrio, circulares o cuadrados con las esquinas redondeades. El fondo es ligerumente redondeado o plano con uma pequeña inclinución hacia el centro, donde existe una salida que hace de desagie y sirve para reguber el nivel. Exá dotada coo una molla con un diámetro de 125 a 200μ, que se cambia por otra mayor cuando termina la adición de Artemia Cuundo se aproxima el final del destele, se puede sustituir por una rejilla fina.

El volumen oscila entre 4 y $15 \mathrm{~m}^{3}$. La entrada de agua es tangencial a la superficic para producir una mejor circulación en el mismo. Estin dotados de aireación.

Al igual que ocurre en otras especies, el destete puede comenzarse en los tanques de cultivo larvario, y la densidad inicial oscila entre 5-10 larvas/litro. En algunos criaderos, coincidiendo con el paso de los tanques de cultivo larvario a los tanques de destete, ya se realiza una primera clasificación de las doradas.

3.2. FACTORES FISICO-QUIMICOS. RENOVACIONES

Al principio del destete, los parámetros físicos son los mismos que se utilizaban en cultivo larvario, tendiendo a lo largo del mismo a adaptar a los alevines a la temperatura del mar y a la luz natural.

El agua se filtra al principio a $5-10 \mu$, utilizando al final del destete agua sin filtrar of filtrada por arena, Las renovaciones son superiores, terminando el destete con caudales del orden de 0.5 a I renovación/hora, manteniendo siempre la concentración de oxigeno igual o superior a 4 mghlitro a la salida del tanque.

3,3. ALIMENTACION

SECUENCIA PROGRESIVA DE ALIMENTACION

1. Arremia viva
2. Artemia + dieta de arranque
3. Dieta de arranque + pienso
4. Pienso

La dieta de arranque suele estar constituida por Ariemia adulta congelada, aunque a veces se utiliza una mezela de carne de pescado o moluscos con pienso a modo de pasta humeda. El pienso que se utiliza suele ser pienso seco, no utilizándose, como en otras especies, grảnulos rehidratables. Al comienzo se suministra "ad libitum", y

Dorada.

TIPO DE ALIMENTO

Alimentación de larvas de darada.

TIPO DE ALIMENTO

Alimentación de larvas en dorada.

Desarrollo larvario de la dorada

0-1 dias

Recién nacida la larva no tiene formado el aparato digestivo, y se nutre a expensas de sus reservas vitelinas (alimentación endógena). Sus ojos no están pigmentados, presentan poca actividad y se mantienen flotando en la superficie del agua. Conforme consumen sus reservas alimenticias van distribuyéndose por toda la columna de agua.

2^{2} dia

Se abre el ano y los ojos empiezan a pigmentarse. Al siguiente día aparece la aleta pectoral, y al final de este tercer dia o al cuarto, abre la boca. La larva comienza a nadar y a desplazarse, y ya es capaz de capturar las primeras presas, Su visión es muy limitada, prestando sólo atención a las presas móviles.

5^{2} dia

Hacia el dfa quinto, la larva termina de reabsorber la vesícula vitelina, pero el glóbulo de grasa permanece aûn dos o tres días más. La larva va progresivamente haciéndose más activa, nada en grupos y tiende a colocarse en aquellos lugares del tanque donde la luz es menos intensa.

En estos primeros das de vida aparece la vejiga natatoria. Esta es muy primitiva, y la larva debe proceder a inflarla. Este inflamiento de la vejiga se produce en dos etapas.

10^{0} día

Alrededor del 10 al 15 dia de vida, cuando la larva ha terminado de reabsorber la gota de grasa y mide aproximadamente $4-5 \mathrm{~mm}$, se produce la 1^{*} inflacción de la vejiga. Para ello, la larva debe subir a la superficie y "tragar" una barbuja de aire. Si no se produce esta primera inflacción, la vejiga no seguirá desarrollándose y conservará durante toda la vida del pez su aspecto primitivo.

Alrededor del 50 día de vida, cuando la larva mide alrededor de $10-15 \mathrm{~mm}$, se produce la verdadera inflacción de la vejiga, que adquiere la forma de una vesicula elíptica, y conforme el alevin va creciendo, irá estirándose progresivamente hacia atrás, hasta alcanzar su longitud máxima (sobre el $20-30 \%$ de la longitud total del pez) cuando el alevin mide unos 5 cm).

50^{*} dia

La metamorfosis se realiza entre los 50 y 60 dias de vida, cuando las larvas miden entre $10-15 \mathrm{~mm}$.
una vez que el alevin se ha acostumbrado a cel, se disminuye la ración. Se debe dosificar en muchas tomas, y a ser posible utilizar comederos automáticos.

3.4. CRECIMIENTO Y SUPER VIVENCIA

Al final del destete, el peso medio del alevin oscila entre 0,1 y $0,3 \mathrm{~g}$. En este momento y a ser posible un poco antes, se hace ya imprescindible una clasificación, ya que suele haber una gran dispersión de tamaños. La supervivenciu oscila entre un $50-85 \%$.

MALFORMACIONES Y PROBLEMAS PATOLOGICOS

Destacan, entre otras posibles malformaciones e infecciones, la lordosis y escoliosis, la ausencia de vejiga natatoria y las infecciones bacterianas.

4.1. LORDOSIS Y ESCOLIOSIS

Son deformaciones de la columna y estain fundamentalmente relacionadas con problemas nutricionales. Con las técnicas de enriquecimiento de presas vivas, su incidencia ha disminuido considerablemente. La lordosis parece estar relacionada con la ausencia de vejiga natatoria.

4.2. AUSENCLA DE VEJIGA NATATORIA

La vejiga natatoria es un órgano cuya principal misión es la de ayudar al pez en su movimiento y a mantenerse a la profundidad deseada, Los peces sin vejiga natatoria funcional, deben de gastar más energia para realizar estos procesos, y es por ello que su crecimiento es más lento. Hasta hace pocos an̄os, la mayoria de las doradas de criadero no presentaban vejiga natatoria funcional pero, actualmente, el porcentaje de doradas criadas con vejiga funcional ha aumentado mucho.

La explicación es sencilla: como ya se ha visto, para que la dorada desarrolle normalmente su vejiga y pueda realizar el primera inflado ha de subir a la superficie

Curva de crecimiento de la dorada (Sparus aurata).
del tanque y tragar una burbuja de aire. Cuando esto sucede, hacia los 10-15 dias de vida, la superficie del tanque suele estar muy sucia con fitoplancton o restos de enriqueeedores, que crean una pelifula de grasa, que impide a la dorada "captar" la burbuja de aire. Para evitar este proceso, lo que se debe hacer es mantener limpia continuamente la superficie, con lo que al ascender la larva podrá ingerir sin dificultad la burbuja.

La ausencia de vejiga natatoria funcional no trise consigo, directamente, una disminución en la supervivencia, pero si provoca un menor crecimiento, una menor resistencia a factores estresantes y una mayor incidencia de
malformaciones como la lordosis.

4.3. INFECCIONES BACTERIANAS

Al igual que ocurre con otras especies, la más común es la vibriosis. Son tratadas con antibióticos u otros agentes quimioterapeúticos (como ol formol) bien via oral, bien mediante su administración en baño. Lo mis eficaz es seguir una buena politica sanitaria, observando los criterios generales que se mencionan al comienzo de este texto.

Otras malformaciones menos comunes son el secuestro del opérculo, la hiperdilatación de la vejiga natatoria, etc.

Actividades

Autoevaluación

Relaciona ambas series de tírminos:

A	Brachionus plicatilis	1	Larva de crustáceo	
B	Nauplius	2	Vibriosis	
C	Deformación columna vertebral	3	Rotifero	
D	Artemia	4	Lordosis	
E	Infección bacteriana	5	Copépodo	

Sellala las magnitudes ideales en el cultivo larvurio de la dorada para cada uno de los enunciados que se proponen:

CONCEPTO	MAGNITUD
Densidad de larvas	
Duración	
Temperatura en tanques	
Horus de oscuridad	
Renovaciones/hora	

Conoce tu entorno

1
¿Qué papel cumple la vejiga natatoria en los peces? ¿Cómo funciona?

2Hay peces que de adultos carezcan de vejiga natatoria? ¿Cuáles? ¿Qué sistema emplean para sustituir la función que aquella realiza en los otros peces?

Son muchos los animales que presentan híbitos alimenticios diferentes en los primeros tiempos de vida y cuando ya son adultos. ¿Podrias citar algunos casos entre los seres de tu propio entomo?

Aplicaciones

Compara los desarrollos larvarios de la dorada y el rodaballo, día a dfa. Elabora un cuadro con las principales semejanzas y diferencias.
¿Por qué el color de los tanques de cultivo larvario de rodaballo suele ser oscuro, mientras que los de cultivo larvario de la dorada suelen ser de color claro?
¿Consideras factible que en Galicia se generalicen los criaderos de Dorada. ¿Cuáles son, a tu juicio, las principales dificultades para que esa generalización se produzea?

4
 Cultivo de la Lubina

DESARROLLO LARVARIO

Cuando nace, la larva de lubina tiene un tamaño aproximado de 4 mm . Son inactivas, flotan en la superficie del tanque y no están pigmentadas. La boca la abre hacia el quinto y sexto día, teniendo ya desarrolladas las aletas pectorales. Progresivamente comienza a adquirir la pigmentación.

Hacia el séptimo y octavo día termina de reabsorber sus reservas vitelinas y se produce el primer inflado de la vejiga. En estos momentos la larva mide entre 5 y 6 mm . El glóbulo de grasa se reabsorbe totalmente unos días después, siendo la pigmentación de la larva perfectamente patente.

La metamorfosis comienza entre los días 30 y 35 , cuando la larva tiene un tamaño aproximado de $10-12 \mathrm{~mm}$, terminando entre los días 60 y 80 , cuando el alevín mide $20-25 \mathrm{~mm}$. El alevín presenta ya los caracteres del adulto, y su color es más claro.

2 CULTIVO LARVARIO

Se utilizan tanques negros de fibra de vidrio con un volumen comprendido entre 5 y $20 \mathrm{~m}^{3}$. La forma es similar a los utilizados para las demás especies.

El cultivo larvario se comienza en oscuridad, y a una temperatura de 16 a $17^{\circ} \mathrm{C}$. Las larvas se mantienen en estas condiciones, sin añadir alimento, hasta el día 9 ó 10 . De este modo se consigue que la larva reabsorba perfectamente sus reservas vitelinas y se mantiene limpia la superficie del agua, con lo que las larvas pueden realizar perfectamente el inflado primero de la vejiga.

A partir del día 10 comienza la alimentación. Para ello se empieza a iluminar los tanques alargando progresivamente el fotoperíodo (hasta llegar a las 12 horas) y aumentando la intensidad luminosa. Esta ha de ser moderada, no sobrepasando los 500 lux. La temperatura también se aumenta ligeramente, llegando a los $19-20^{\circ} \mathrm{C}$.

[^0]El cultivo se realiza siempre en flujo continuo de agua, comenzando con un 2 a 5% de renovación a la hora, para terminar, al inicio del destete, con un $25-50 \%$ hora. La concentraciôn de oxigeno ha de ser siempre superior a $4-5 \mathrm{mg} / \mathrm{l}$.

La densidad inicial oseila entre las $40-50$ larvas/litro, y la supervivencia es alta, elevaindose a un 40 50% a menudo.

2.1. ALIMENTACION

A pesar de que la mayoria de los cultivadores comienzan el cultivo suministrando rotifero, la lubina es capaz de tomar desde el primer día nauplius de Artemia, Lo más usual es alimentar los 465 primeros dias con rotifero, pasando desputs a suministrar los nauplius enriquecidos. A partir del dfa 20 ó 25 se puede empezar a sustituirlos por metanauplius de dos dias. La concentración de Artemia en los tanques, debe oscilar entre 3-5 Artemia/mL.

Hay que tener en cuenta que las larvas de lubina son muy voraces e ingieren gran cantidad de Artemia muy rápidamente (en sólo 15620 minutos tras la alimentación, todas las lubinas tienen el estómago lleno de Artemia. Esto hace dificil mantener concentraciones en los tanques, y lo
que se hace normalmente es dosificarles la Artemia en varias tomas, suministrando en cada una de ellas la camtidad suticiente para que se alimenten bien todas las larvas.

3 destete

Suele comenzar entre los dias 40 y 50 , cuando la larva pesa entre 10 y 30 mg , aunque algunos cultivadores lo comienzan hacia el dia 30 (si bien los resultados son peores) y dura unos 20 dias, terminando entre los dias 60 y 70. El peso medio de la larva es entonces de $50-100 \mathrm{mg}$. La densidad inicial es de unas 10 larvas/litro, y la supervivencia es elevada, alcanzando un 60 u 80%.

Los tanques, condiciones fisico-quimicas y renovaciones son similares a las usadas en la dorada. La unnica diferencia significativa es que el caudal puede ser un poco superior, llegando a 1 renovación/hora.

El esquema alimenticio es también similar al usado para el destete de la dorada, pasando de Artemia viva a una dieta de arranque compuesta por Artemia o copépodos congelados, y a continuación al pienso seco. La lubina se adapta bastante bien al alimento inerte, y este cambio de alimentación no es muy problemático.

Lubina.

Es importante resaltar la importancia de las clasificaciones. La lubina es un pez muy voraz, y si no se clasifican adecuadamente se pueden presentar problemas de canibulismo, debido a la dispersión de tallas. Lo más usual es realizar una clasifícación recién terminado el destete, coincidjendo con el final de la metamorfosis.

4
 MALFORMACIONES Y PROBLEMAS PATOLOGICOS

Entre las malformaciones desaaca la hiperdilatación de la vejjga natatoria, en la que este órguno uumenta anormalmente de tamaño, ocasionando la muerte de la larva por aplastamiento de los demás órganos internos. Este problema suele presentarse entre los dias 20 y 40 de cultivo. Suele deberse a deficiencias nutricionales o a factores estresantes en el cultivo, tales como, excesiva luz o temperatura, manejo inadecuado, etc.

La lubina es bastante sensible a contraer infecciones bacterianas del tipo de vibriosis, sobre todo si la temperutura de cultivo es elevada. Este riesgo se acentúa al efectuar las clasificaciones, ya que las descamaciones sufridas por roces con el salabre y paredes de los tanques constituyen una puerta para la entrada de bacterias, Ademais, el estrés causado por el manejo, debilita al pez y lo hace más susceptible. Es conveniente tomar medidas profilácticas del tipo de baños preventivos en formol antes y después de las clasificaciones. En caso de que se presente la infección, se trata con antibióticos.

Otros problemas que pueden presentarse son infestaciones por paraisitos, enfermedad de la burbuja, etc. Deformaciones exqueléticas y ausencia de vejiga natatoria cran problemas muy comunes, pero las nuevas técnicas de cultivo, han disminuido mucho su incidencia.

TIPO DE ALIMENTO

Alimentaciôn en cultivo larvario de Lubina.

Curva de crecimiento de la Lubina (Dicentrarchus labrax.

5 Cultivo del Lenguado

DESARROLLO LARVARIO

El desarrollo larvario del lenguado dura unos 30 dias. Recién nacida, la larva, que mide de 3 a 3.5 mm , es pasiva, simétrica y vive a expensas del vitelo. Hacia el terecr dia, se le abren la boca y el ano, apareciendo las aletas pectorales y adquiere movilidad. Es una larva pelágica.

La metamorfosis comienza muy pronto, hacia los días 10 al 15, volviéndose progresivamente bentónica y asimétrica. El ojo izquierdo emigra al lado derecho y la boca sufre una torsión. El lenguado se apoya sobre el lado izquierdo, que se queda totalmente despigmentado. La duración de la metamorfosis es de unas dos semanas.

2 CULTIVO LARVARIO

Los tanques de cultivo larvario del lenguado son similares a los de otras especies. La temperatura óptima es de $18^{\circ} \mathrm{C}$, elevándola poco a poco desde los $13^{\circ} \mathrm{C}$ a los que se realiza la incubación, una vez que larva ha reabsorbido sus reservas vitelinas y comienza a alimentarse exógenamente. La salinidad normal es de un 35%, pero se adaptan bien a cuakquiera comprendida entre 20 y 40%. Los tanques estin dotados de luz mediante fluorescentes.

El lenguado es muy exigente en cuanto a calidad de agua, por lo que necesario emplear agua de mar filtrada hasta $1 \mu \mathrm{y}$, muy frecuentemente, se esteriliza. Los primeros días de cultivo no se suelen dar renovaciones al agua, a no ser que los niveles de amonio y nitritos lo hagan necesario. Sin embargo, a partir de los dias 8 ó 10. se van aumentando las renovaciones hasta un 25% a la hora, con el transcurso de la metamorfosis.

A partir del tercer día comienza a alimentarse del medio. Debido al tamaño de su boca, se puede alimentar desde el primer dia con nauplius de Artemia. Hacia

Esquema del desarrollo larvario del longuado a la temperatura de $19 \pm 1{ }^{\circ}$ C. (Saysin Barnobel|
el dia 20, cuando ya está bastante avanzada la metamorfosis, se cambian los nauplius por metanauplius de dos dias, y, einco o diez das después, se puede comenzar a alimentar con Artemia adulta, si es que se dispone de ella.

Las densidades utilizadas en el cultivo larvario varian entre 10 y 50 larvas/litro, seguin el volumen del tanque. El crecimiento es muy rapido, Al nacer tiene un peso de 0.65 mg , alcamzando los 75 mg al día treinta de vida. cuando ha terminado la metamorfosis. La supervivencia durante este primer mes de vida es muy elevada, del orden del 60 al 70\%

DESTETE

El destete se inicia hacia el dia 30 de vida, una vez que ha finalizado la metamorfosis. Los alevines se transfieren entonces a los tanques de alevinaje, en los que se realizará el destete. Estos tanques son circulares, de fondo plano con una ligera inclinación hacia el desaguie central. Son poco profundos, con entrada tangencial del agua y dotados de débil aireación.

Las condiciones de cultivo son similares a las observadas en cultivo larvario, disminuyendo la calidad de agua conforme se acerca el final del destete. En este momento, los caudales son mayures, Ilegando a ser de 0,4 a 0,5 renovaciones/hora.

El destete es muy problemático, y su duracion puede llegar a ser de tres meses, terminando cuando el alevin tiene ya un peso superior a 1 gr .

Tanque de destete de lenguado (Solea solea).
A. Alimentador artonótico. B. Agua.

El principal problema es que con la adquisición del carícter bentónico, el Jenguado se alimenta en el fondo, por lo que el alimento que se adicione tiene que tener una gran retención en el agua, y no ensuciar mucho el medio. Se les suele mezelar con algún atrayente como glicina o betaina. Muchos criaderos alimentan el alevin de lenguado con un oligoqueto (Lambricillus rivalis) a partir del dia 50. La primera etapa de adaptación a un alimento inerte consistente en plancton congelado. lo realizan bastante bien, con una supervivencia de un 70 u 80%, pero el paso a pienso es mucho más complicado, ya la supervivencia no suele alcunzar el 50%.

Supervivencia de Lenguado (Solea solea) durante el cultivo larvario.

Curva de crecimiento de las larvas de lenguado
(Solea solea). (Sagin Girin)

Actividades

Autoevaluación

Señala las magnitudes ideales en los cultivos de lubina y lenguado para cada uno de los enunciados que se proponen:

CONCEPTO	LUBINA	LENGUADO
Temperatura de cultivo larvario		
Renovación al final de cultivo larvario		
Concentración de oxigeno		
Densidad de larvas en los tanques		
Duración del destete		

¿Qué diferencias esenciales encuentras en la calidad del agua requerida por los cultivos larvarios de rodaballo, dorada, etc y del lenguado?

Aplicaciones

Compara el desarrollo larvario del rodaballo, lubina y lenguado. Elabora un cuadro con las principales semejanzas y diferencias.

Solicita un catálogo de lamparis (fluorescentes, de filamento, etc) y compara las intensidades de luz. ${ }_{¿}$ Cual de ellas elegirias para un criadero de peces y sobre qué instalaciones las aplicarias?

Conoce tu entorno

1
Con ayuda de la bibliografía adecuada busca las definiciones de enfermedad. ¿Cuail de ellas te parece mis apropiada para el concepto de enfermedad empleado en el texto?

Cita 2 cjemplos de cada clase que afecten a los grupos de animales que se señalan:

	HOMBRE	PECES	CRUSTACEOS	MOLISCOS
Infceción Bacteriana				
Parasitosis				
Infección virica				
Malformaciones				

¿Qué es un antibiótico? Señala algunos antibióticos empleados en piscicultura marina. ¿Alguno de los nombrados se aplica en medicina? ¿Cuáles?

Términos del texto recogidos en el glosario

A	1	
Aleta	Incubación	Zooplancton
Acido graso	Incubador	
Aireación	Inducción	
Alevin		
	L.	
B		
	Larva	
Bentos	Lordosis	
Bentónico		
	M	
C		
	Metabolito	
Carga	Metamorfosis	
Caudal	Metanauplius	
Clase		
Compresor de aire	N	
Criadero		
D	Nauplius	
Destete	\mathbf{P}	
Dieta		
Dieta de arranque	Parásito	
Dosificación	Patógeno	
	Pelágico	
E	Pienso	
Eclosión	Plancton	
Enfermedad de la burbuja	Poliester	
Engorde	Preengorde	
Escoliosis	Presión total de gases	
Especic		
Esterilización	S	
Estrés		
	Salabre	
F	Salinidad	
	Saturación	
Fase vitelina	Saturómetro de Weiss	
Fibra de vidrio	Soplante	
Filtración		
Filtración biológica	T	
Filtración mecánica		
Filtración quimica	Talla comercial	
Filtro	Técnica del agua verde	
Filtro de arena	Termostato	
Filtro de cartucho		
Fitoplancton	U	
Fotoperiodo		
Fotosintesis	Ultravioleta	
H	V	
Hermafrodita	Vitelo	

Huevo

[^0]: Variaciones de la intensidad de luz y del tiempo de iluminación durante el cultivo larvario de la lubina (Dicentrarchus labrax).

